241 research outputs found

    Privacy in characterizing and recruiting patients for IoHT-aided digital clinical trials

    Get PDF
    Nowadays there is a tremendous amount of smart and connected devices that produce data. The so-called IoT is so pervasive that its devices (in particular the ones that we take with us during all the day - wearables, smartphones...) often provide some insights on our lives to third parties. People habitually exchange some of their private data in order to obtain services, discounts and advantages. Sharing personal data is commonly accepted in contexts like social networks but individuals suddenly become more than concerned if a third party is interested in accessing personal health data. The healthcare systems worldwide, however, begun to take advantage of the data produced by eHealth solutions. It is clear that while on one hand the technology proved to be a great ally in the modern medicine and can lead to notable benefits, on the other hand these processes pose serious threats to our privacy. The process of testing, validating and putting on the market a new drug or medical treatment is called clinical trial. These trials are deeply impacted by the technological advancements and greatly benefit from the use of eHealth solutions. The clinical research institutes are the entities in charge of leading the trials and need to access as much health data of the patients as possible. However, at any phase of a clinical trial, the personal information of the participants should be preserved and maintained private as long as possible. During this thesis, we will introduce an architecture that protects the privacy of personal data during the first phases of digital clinical trials (namely the characterization phase and the recruiting phase), allowing potential participants to freely join trials without disclosing their personal health information without a proper reward and/or prior agreement. We will illustrate what is the trusted environment that is the most used approach in eHealth and, later, we will dig into the untrusted environment where the concept of privacy is more challenging to protect while maintaining usability of data. Our architecture maintains the individuals in full control over the flow of their personal health data. Moreover, the architecture allows the clinical research institutes to characterize the population of potentiant users without direct access to their personal data. We validated our architecture with a proof of concept that includes all the involved entities from the low level hardware up to the end application. We designed and realized the hardware capable of sensing, processing and transmitting personal health data in a privacy preserving fashion that requires little to none maintenance

    Ropeway roller batteries dynamics. Modeling, identification, and full-scale validation

    Get PDF
    A parametric mechanical model based on a Lagrangian formulation is here proposed to predict the dynamic response of roller batteries during the vehicles transit across the so-called compression towers in ropeways transportation systems. The model describes the dynamic interaction between the ropeway substructures starting from the modes and frequencies of the system to the forced dynamic response caused by the vehicles transit. The analytical model is corroborated and validated via an extensive experimental campaign devoted to the dynamic characterization of the roller battery system. The data acquired on site via a custom-design sensor network allowed to identify the frequencies and damping ratios by employing the Frequency Domain Decomposition (FDD) method. The high fidelity modeling and the system identification procedure are discussed

    Wireless Sensor Networks in Structural Health Monitoring: a Modular Approach

    Get PDF
    In this paper, we present the Modular Monitoring System (MMS), a low-power wireless architecture dedicated to Structural Health Monitoring (SHM) applications. Our solution features an easily customizable modular architecture, fulfilling the needs of many SHM applications. The MMS supports mesh network topology and offers excellent coverage and reliability, taking advantage of Wireless Sensor Networks (WSN) technology. In this preliminary work we show how the flexibility of our approach offers great advantages with respect to the current state-of-the-art systems dedicated to SHM

    B-Cell Epitopes in NTS-DBL1 alpha of PfEMP1 Recognized by Human Antibodies in Rosetting Plasmodium falciparum

    Get PDF
    Plasmodium falciparum is the most lethal of the human malaria parasites. the virulence is associated with the capacity of the infected red blood cell (iRBC) to sequester inside the deep microvasculature where it may cause obstruction of the blood-flow when binding is excessive. Rosetting, the adherence of the iRBC to uninfected erythrocytes, has been found associated with severe malaria and found to be mediated by the NTS-DBL1 alpha-domain of Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1). Here we show that the reactivity of plasma of Cameroonian children with the surface of the FCR3S1.2-iRBC correlated with the capacity to disrupt rosettes and with the antibody reactivity with a recombinant PfEMP1 (NTS-DBL1 alpha of IT4(var60)) expressed by parasite FCR3S1.2. the plasma-reactivity in a microarray, consisting of 96 overlapping 15-mer long peptides covering the NTS-DBL1 alpha domain from IT4var60 sequence, was compared with their capacity to disrupt rosettes and we identified five peptides where the reactivity were correlated. Three of the peptides were localized in subdomain-1 and 2. the other two peptide-sequences were localized in the NTS-domain and in subdomain-3. Further, principal component analysis and orthogonal partial least square analysis generated a model that supported these findings. in conclusion, human antibody reactivity with short linear-peptides of NTS-DBL1 alpha of PfEMP1 suggests subdomains 1 and 2 to hold anti-rosetting epitopes recognized by anti-rosetting antibodies. the data suggest rosetting to be mediated by the variable areas of PfEMP1 but also to involve structurally relatively conserved areas of the molecule that may induce biologically active antibodies.Swedish Research Council (VR)Swedish Academy of Sciences (KVA, Soderberg Foundation)Karolinska Institutet-DPAEU Network of Excellence EviMalarKarolinska Inst, Dept Microbiol Tumor & Cell Biol MTC, Stockholm, SwedenKarolinska Inst, Dept Lab Med, Therapeut Immunol TIM, Stockholm, SwedenKarolinska Univ Hosp, CAST, Huddinge, SwedenUniv Estadual Campinas, Dept Biochem, Campinas, SP, BrazilWeb of Scienc

    Arene–Ruthenium(II) Acylpyrazolonato Complexes: Apoptosis-Promoting Effects on Human Cancer Cells

    Get PDF
    A series of ruthenium(II) arene complexes with the 4-(biphenyl-4-carbonyl)-3-methyl-1-phenyl-5-pyrazolonate ligand, and related 1,3,5-triaza-7-phosphaadamantane (PTA) derivatives, has been synthesized. The compounds have been characterized by NMR and IR spectroscopy, ESI mass spectrometry, elemental analysis, and X-ray crystallography. Antiproliferative activity in four human cancer cell lines was determined by MTT assay, yielding dose- and cancer cell line-dependent IC50 values of 9-34 μM for three hexamethylbenzene-ruthenium complexes, whereas the other metal complexes were much less active. Apoptosis was the mechanism involved in the anticancer activity of such compounds. In fact, the hexamethylbenzene-ruthenium complexes activated caspase activity, with consequent DNA fragmentation, accumulation of pro-apoptotic proteins (p27, p53, p89 PARP fragments), and the concomitant down-regulation of antiapoptotic protein Bcl-2. Biosensor-based binding studies indicated that the ancillary ligands were critical in determining the DNA binding affinities, and competition binding experiments further characterized the nature of the interaction

    Molecular in-depth on the epidemiological expansion of SARS-CoV-2 XBB.1.5

    Get PDF
    Since the beginning of the pandemic, the generation of new variants periodically recurs. The XBB.1.5 SARS-CoV-2 variant is one of the most recent. This research was aimed at verifying the potential hazard of this new subvariant. To achieve this objective, we performed a genome-based integrative approach, integrating results from genetic variability/phylodynamics with structural and immunoinformatic analyses to obtain as comprehensive a viewpoint as possible. The Bayesian Skyline Plot (BSP) shows that the viral population size reached the plateau phase on 24 November 2022, and the number of lineages peaked at the same time. The evolutionary rate is relatively low, amounting to 6.9 × 10−4 subs/sites/years. The NTD domain is identical for XBB.1 and XBB.1.5 whereas their RBDs only differ for the mutations at position 486, where the Phe (in the original Wuhan) is replaced by a Ser in XBB and XBB.1, and by a Pro in XBB.1.5. The variant XBB.1.5 seems to spread more slowly than sub-variants that have caused concerns in 2022. The multidisciplinary molecular in-depth analyses on XBB.1.5 performed here does not provide evidence for a particularly high risk of viral expansion. Results indicate that XBB.1.5 does not possess features to become a new, global, public health threat. As of now, in its current molecular make-up, XBB.1.5 does not represent the most dangerous variant

    Privacy preserving data management in recruiting participants for digital clinical trials

    No full text
    Our data is now more valuable than ever. The uncontrolled growth of internet-centered services has led us to accept many compromises about how we share it. In the era of Internet of Things, smart devices are collecting personal data continuously. Now, more than ever, we are in need of privacy-preserving applications where users are always in control of their sensitive data. Previous work focus on the preservation of privacy on datasets possibly collected during clinical trials. In contrast, here we focus on the preservation of privacy during the preliminary recruiting phase of a clinical trial. Our solution, is the first where a) user's data are not stored in any public database and remain in the user's private space during the whole recruiting phase and b) at the same time the Clinical Research Institute is assured that it is acquiring useful and authentic data. We provide a proof-of-concept implementation and study its performance based on a real-world evaluation

    ON THE SCANNING PROPERTIES OF IMAGING ANTENNAS BASED ON DUAL CONFOCAL PARABOLOIDAL REFLECTORS

    No full text
    In this paper the scanning properties of dual reflector antenna systems constituted by two confocal paraboloidal reflectors fed by a planar array are investigated. This antenna architecture combines the interesting features of reflectors and array antennas. Because of the offset configuration the radiation pattern exhibits an anomalous deviation in the beam pointing when the beam is scanned out of the boresight direction. Heuristic equations, representing an extension of the linear equations available in the literature, are derived, which permit predicting the pointing direction of the overall system as a function of the pointing direction of the feeding array in a significant field of view

    The role of blockchain and IoT in recruiting participants for digital clinical trials

    No full text
    Our personal data is now more valuable than ever. The uncontrolled growth of internet-centered services has led us to accept many compromises about how we share it. In the era of Internet of Things, personal data is collected continuously. Now, more than ever, we are in need of privacy-preserving applications where users always retain control of their personal data. In this paper, we present a secure way to control the flow of personal data in the specific case of the recruitment of participants for clinical trials. We take special care to protect the interests of both parties: the individual can keep its data private until an agreement is reached, and the Clinical Research Institute can be assured that it is acquiring useful and authentic data. We provide a proof-of-concept implementation and study its performance based on a real-world evaluation
    • …
    corecore